Andengradsligning og Kædebrøk
Genveje til: Forskelle, Ligheder, Jaccard lighed Koefficient, Referencer.
Forskel mellem Andengradsligning og Kædebrøk
Andengradsligning vs. Kædebrøk
Rødderne (løsningerne) til en '''andengradsligning''' med koefficienterne a, b og c kan sammenfattes i den viste ligning. Ved en andengradsligningErik Kristensen, Ole Rindung: Matematik I, G.E.C.Gads Forlag, 1968, side 156 f. forstås en ligning på formen Størrelserne a, b og c kaldes andengradsligningen koefficienter og x \in \mathbb er den ubekendte, hvis værdi skal bestemmes med ligningen. En kædebrøk er et matematisk udtryk af formen Hvor a0 er et heltal og de andre an-værdier er positive heltal.
Ligheder mellem Andengradsligning og Kædebrøk
Andengradsligning og Kædebrøk har 0 ting til fælles (i Unionpedia).
Ovenstående liste besvarer følgende spørgsmål
- I hvad der synes Andengradsligning og Kædebrøk
- Hvad de har til fælles Andengradsligning og Kædebrøk
- Ligheder mellem Andengradsligning og Kædebrøk
Sammenligning mellem Andengradsligning og Kædebrøk
Andengradsligning har 7 relationer, mens Kædebrøk har 11. Da de har til fælles 0, den Jaccard indekset er 0.00% = 0 / (7 + 11).
Referencer
Denne artikel viser forholdet mellem Andengradsligning og Kædebrøk. For at få adgang hver artikel, hvorfra oplysningerne blev ekstraheret, kan du besøge: