Vi arbejder på at gendanne Unionpedia-appen i Google Play Store
🌟Vi har forenklet vores design for bedre navigation!
Instagram Facebook X LinkedIn

Skak og Udødelige skakproblem

Genveje til: Forskelle, Ligheder, Jaccard lighed Koefficient, Referencer.

Forskel mellem Skak og Udødelige skakproblem

Skak vs. Udødelige skakproblem

Skak (afledt af det persiske ord 'Shah' – konge) er et brætspil for to spillere og et af verdens mest populære spil. Det udødelige skakproblem betegnes en skakopgave af Conrad Bayer (1828–1897), som første gang offentliggjordes den 16.

Ligheder mellem Skak og Udødelige skakproblem

Skak og Udødelige skakproblem har 5 ting til fælles (i Unionpedia): Konge (skak), Matbillede, Skak, Steinitz' udødelige parti, Udødelige parti (skak).

Konge (skak)

Kongen kan flytte et felt i alle retninger.

Konge (skak) og Skak · Konge (skak) og Udødelige skakproblem · Se mere »

Matbillede

Et matbillede er en afbildning af en stilling i skak, hvor den ene part er sat mat.

Matbillede og Skak · Matbillede og Udødelige skakproblem · Se mere »

Skak

Skak (afledt af det persiske ord 'Shah' – konge) er et brætspil for to spillere og et af verdens mest populære spil.

Skak og Skak · Skak og Udødelige skakproblem · Se mere »

Steinitz' udødelige parti

Skakpartiet Steinitz – von Bardeleben, Hastings 1895 hører blandt de mest kendte partier i skak-historien.

Skak og Steinitz' udødelige parti · Steinitz' udødelige parti og Udødelige skakproblem · Se mere »

Udødelige parti (skak)

Adolf Anderssen, som spillede hvid og vandt partiet Det udødelige parti er et parti skak der blev spillet i 1851 mellem Adolf Anderssen og Lionel Kieseritzky.

Skak og Udødelige parti (skak) · Udødelige parti (skak) og Udødelige skakproblem · Se mere »

Ovenstående liste besvarer følgende spørgsmål

Sammenligning mellem Skak og Udødelige skakproblem

Skak har 157 relationer, mens Udødelige skakproblem har 8. Da de har til fælles 5, den Jaccard indekset er 3.03% = 5 / (157 + 8).

Referencer

Denne artikel viser forholdet mellem Skak og Udødelige skakproblem. For at få adgang hver artikel, hvorfra oplysningerne blev ekstraheret, kan du besøge: