Vi arbejder på at gendanne Unionpedia-appen i Google Play Store
UdgåendeIndgående
🌟Vi har forenklet vores design for bedre navigation!
Instagram Facebook X LinkedIn

Gruppehomomorfi

Indeks Gruppehomomorfi

I matematikken er en gruppehomomorfi, givet to grupper (G, *) og (H, ·), en afbildning h: G → H, så hvor gruppeoperationen på venstre side af ligningen er den fra G og den på højre side den fra H. Af denne egenskab kan det udledes, at h afbilder det neutrale element, eG, fra G i det neutrale element, eH, fra H, og den afbilder inverse elementer i inverse, forstået sådan at h(u-1).

Indholdsfortegnelse

  1. 4 relationer: Alternerende gruppe, Automorfi, Homomorfi, Undergruppe.

Alternerende gruppe

I matematikken er en alternerende gruppe en gruppe af lige permutationer på en endelig mængde.

Se Gruppehomomorfi og Alternerende gruppe

Automorfi

gruppe med addition som operator, vil negation bevare gruppestrukturen: Om man følger stregerne på illustrationen før eller efter addition vil give samme resultat; (−''a'') + (−''b'').

Se Gruppehomomorfi og Automorfi

Homomorfi

Betegnelsen homomorfi benyttes om en afbildning \phi:G\to H som bevarer matematiske strukturer.

Se Gruppehomomorfi og Homomorfi

Undergruppe

Givet en gruppe G med binær operator *, siges en delmængde H i gruppeteori at være en undergruppe af G, hvis H også danner en gruppe med operatoren *. Mere præcist er H en undergruppe af G, hvis restriktionen af * på H er en gruppeoperator på H. En ægte undergruppe af en gruppe G er en undergruppe H, der er en ægte delmængde af G (dvs.

Se Gruppehomomorfi og Undergruppe