Indholdsfortegnelse
15 relationer: Arcus-funktioner, Bijektiv, Funktion (matematik), Gruppehomomorfi, Homeomorfi, Homomorfi, Karakteristik (matematik), Kardinalitet, Ligning, Matematisk logik, Sportopologi, Stokastisk variabel, Surjektiv, Tællelig mængde, Trigonometrisk funktion.
Arcus-funktioner
Arcus-funktionerne, også kaldet de circulære funktioner eller blot de omvendte trigonometriske funktioner, er omvendte funktioner til de trigonometriske funktioner med restriktioner i deres definitionsmængder for at gøre dem injektive.
Se Injektiv og Arcus-funktioner
Bijektiv
En bijektiv funktion. En afbildning \phi:X\to Y er bijektiv (enentydig), når den både er injektiv og surjektiv, og man siger at \phi er en bijektion.
Funktion (matematik)
En funktion eller afbildning er i matematisk forstand et redskab, der beskriver sammenhængen mellem en såkaldt uafhængig variabel og en anden, såkaldt afhængig variabel.
Se Injektiv og Funktion (matematik)
Gruppehomomorfi
I matematikken er en gruppehomomorfi, givet to grupper (G, *) og (H, ·), en afbildning h: G → H, så hvor gruppeoperationen på venstre side af ligningen er den fra G og den på højre side den fra H. Af denne egenskab kan det udledes, at h afbilder det neutrale element, eG, fra G i det neutrale element, eH, fra H, og den afbilder inverse elementer i inverse, forstået sådan at h(u-1).
Se Injektiv og Gruppehomomorfi
Homeomorfi
Et klassisk eksempel på homeomorfi: en kaffekop og en donut er topologisk set identiske; der eksisterer en homøomorfi mellem dem. I det matematiske område topologi er en homeomorfi (eller homøomorfi), eller en topologisk isomorfi (fra græsk: homoios 'lignende' + morphē 'form'), en speciel isomorfi, der bevarer topologiske egenskaber.
Homomorfi
Betegnelsen homomorfi benyttes om en afbildning \phi:G\to H som bevarer matematiske strukturer.
Karakteristik (matematik)
I matematikken er karakteristikken af en ring R med multiplikativt neutralt element 1R defineret til at være det mindste positive heltal n, så hvor n1R er Hvis intet sådant n eksisterer, defineres karakteristikken af R til at være 0.
Se Injektiv og Karakteristik (matematik)
Kardinalitet
I matematikken er en mængdes kardinalitet eller mægtighed et mål for "antallet af elementer i mængden." Der er to tilgangsvinkler til kardinalitet – en der sammenligner mængder direkte ved brug af bijektioner, injektioner og surjektioner og en anden, der benytter kardinaltal.
Ligning
En matematisk ligning er et åbent udsagn, som fastslår at to udtryk (ofte kaldet hhv. venstre og højre side af ligningen) er lige store, skrevet op på formen: (det ene udtryk).
Matematisk logik
Matematisk logik (også kendt som symbolsk logik) er et felt i matematikken med tæt forbindelse til matematikkens grundlag, datalogi og filosofisk logik.
Se Injektiv og Matematisk logik
Sportopologi
I topologi og relaterede områder af matematikken forstår man ved begrebet sportopologi den topologi en delmængde af et topologisk rum nedarver fra rummet.
Stokastisk variabel
En stokastisk variabel er inden for sandsynlighedsregning og statistik en variabel, hvis værdi påvirkes af tilfældigheder.
Se Injektiv og Stokastisk variabel
Surjektiv
En surjektiv funktion. En anden surjektiv funktion. En ikke-surjektiv funktion. En afbildning \phi:A\to B kaldes surjektiv på B, og vi siger, at \phi er en surjektion af A på B, hvis \phi(A).
Tællelig mængde
En tællelig mængde er en mængde, der har samme kardinalitet (dvs. i en vis forstand samme antal elementer) som en delmængde af de naturlige tal, eller ækvivalent: en mængde A er tællelig, hvis og kun hvis der findes en injektiv funktion fra A til de naturlige tal.
Se Injektiv og Tællelig mængde
Trigonometrisk funktion
Trigonometriske funktioner er matematiske funktioner, som defineres ud fra retningspunkter på enhedscirklen.